Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Isotopes Environ Health Stud ; 60(2): 141-161, 2024 May.
Article in English | MEDLINE | ID: mdl-38270129

ABSTRACT

We characterized the elemental and C and N stable isotope compositions of Tillandsia fasciculata Sw., Tillandsia balbisiana Schult. & Schult.f. and Tillandsia recurvata (L.) L. samples collected in Cienfuegos (Cuba). Results showed high enrichment factors for S, Hg, Cd, Pb, P, Zn, Cu, Mo, Sb and Ca in all Tillandsia species, indicating inputs from local anthropogenic activities (road traffic, industries and cement production). Carbon concentrations and δ13C varied from 38.3-47.7 % and -20.4 to -13.4 ‰ within the three species, respectively. δ13C showed seasonal dependence with the dry and wet periods and more 13C-depleted values in urban/industrial areas, coherent with the input of anthropogenic emissions. Nitrogen concentrations (0.4-1.3 %) and δ15N values (-9.9-4.4 ‰) exhibit larger variations and are positively correlated in the three species. The most positive δ15N in T. recurvata (-0.2-4.4 ‰) are attributed to contributions from industrial activities and road traffic. In fact, both δ15N and total nitrogen (TN) values increase in sites with higher road traffic and show significant correlations with typical road traffic and industrial tracers. Finally, we calculate an average total nitrogen deposition rate of 4.4 ± 2.3 kg ha-1 a-1 from N content in T. recurvata, similar to the existing values determined in the region by field measurements, but higher than the global terrestrial average.


Subject(s)
Air Pollutants , Air Pollution , Tillandsia , Tillandsia/chemistry , Air Pollutants/analysis , Biological Monitoring , Environmental Monitoring/methods , Air Pollution/analysis , Caribbean Region , Nitrogen , Isotopes
2.
Sci Total Environ ; 905: 166923, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37704133

ABSTRACT

Plastic production continues to increase every year, yet it is widely acknowledged that a significant portion of this material ends up in ecosystems as microplastics (MPs). Among all the environmental compartments affected by MPs, the atmosphere remains the least well-known. Here, we conducted a one-year simultaneous monitoring of atmospheric MPs deposition in ten urban areas, each with different population sizes, economic activities, and climates. The objective was to assess the role of the atmosphere in the fate of MPs by conducting a nationwide quantification of atmospheric MP deposition. To achieve this, we deployed collectors in ten different urban areas across continental Spain and the Canary Islands. We implemented a systematic sampling methodology with rigorous quality control/quality assurance, along with particle-oriented identification and quantification of anthropogenic particle deposition, which included MPs and industrially processed natural fibres. Among the sampled MPs, polyester fibres were the most abundant, followed by acrylic polymers, polypropylene, and alkyd resins. Their equivalent sizes ranged from 22 µm to 398 µm, with a median value of 71 µm. The particle size distribution of MPs showed fewer large particles than expected from a three-dimensional fractal fragmentation pattern, which was attributed to the higher mobility of small particles, especially fibres. The atmospheric deposition rate of MPs ranged from 5.6 to 78.6 MPs m-2 day-1, with the higher values observed in densely populated areas such as Barcelona and Madrid. Additionally, we detected natural polymers, mostly cellulosic fibres with evidence of industrial processing, with a deposition rate ranging from 6.4 to 58.6 particles m-2 day-1. There was a positive correlation was found between the population of the study area and the median of atmospheric MP deposition, supporting the hypothesis that urban areas act as sources of atmospheric MPs. Our study presents a systematic methodology for monitoring atmospheric MP deposition.

3.
Environ Sci Pollut Res Int ; 27(2): 2184-2196, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31773525

ABSTRACT

Road dust is an indicator widely used when monitoring contamination and evaluating environmental and health risks in urban ecosystems. We conducted an exhaustive characterization of road dust samples coupling their chemical characteristics and stable isotope compositions (C and N) with the aim of evaluating the levels and spatial distribution of local contamination as well as to identify its main source(s) in the coastal city of Cienfuegos (Cuba). Results indicate that the concentrations of several elements (total nitrogen, S, Ca, V, Cu, Zn, Mo, Sn, Hg, and Pb) exceed the background values reported for both Cuban soils and the upper continental crust (UCC) and showed a high variability among the sampling sites. We show that road dust contamination in Cienfuegos induces high associated ecological risks. Among the studied elements, Cd and Hg are the major contributors to the environmental contamination in the city, mainly along busy roads and downtown. δ13C and δ15N, coupled to a multivariate statistical analysis, help associate the studied elements to several local sources of contamination: mineral matter derived from local soils, cement plant and related activities, road pavement alteration, power plant, road traffic, and resuspension of particulate organic matter (POM). Our results suggest that incorporating the chemical and isotope monitoring of road dust may help implement more effective environmental management measures in order to reduce their adverse impact on ecosystems and human health.


Subject(s)
Dust/analysis , Environmental Monitoring , Metals, Heavy/analysis , Carbon Isotopes , Cities , Cuba , Nitrogen Isotopes , Risk Assessment
4.
Environ Pollut ; 243(Pt A): 427-436, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30212797

ABSTRACT

In Mediterranean areas, dry deposition is a major component of the total atmospheric N input to natural habitats, particularly to forest ecosystems. An innovative approach, combining the empirical inferential method (EIM) for surface deposition of NO3- and NH4+ with stomatal uptake of NH3, HNO3 and NO2 derived from the DO3SE (Deposition of Ozone and Stomatal Exchange) model, was used to estimate total dry deposition of inorganic N air pollutants in four holm oak forests under Mediterranean conditions in Spain. The estimated total deposition varied among the sites and matched the geographical patterns previously found in model estimates: higher deposition was determined at the northern site (28.9 kg N ha-1 year-1) and at the northeastern sites (17.8 and 12.5 kg N ha-1 year-1) than at the central-Spain site (9.4 kg N ha-1 year-1). On average, the estimated dry deposition of atmospheric N represented 77% ±â€¯2% of the total deposition of N, of which surface deposition of gaseous and particulate atmospheric N averaged 10.0 ±â€¯2.9 kg N ha-1 year-1 for the four sites (58% of the total deposition), and stomatal deposition of N gases averaged 3.3 ±â€¯0.8 kg N ha-1 year-1 (19% of the total deposition). Deposition of atmospheric inorganic N was dominated by the surface deposition of oxidized N in all the forests (means of 54% and 42% of the dry and total deposition, respectively). The relative contribution of NO2 to dry deposition averaged from 19% in the peri-urban forests to 11% in the most natural site. During the monitoring period, the empirical critical loads provisionally proposed for ecosystem protection (10-20 kg N ha-1 year-1) was exceeded in three of the four studied forests.


Subject(s)
Forests , Nitrogen/analysis , Plant Leaves/chemistry , Air Pollutants/analysis , Environmental Monitoring/methods , Models, Chemical , Spain
5.
Sci Total Environ ; 642: 723-732, 2018 Nov 15.
Article in English | MEDLINE | ID: mdl-29913367

ABSTRACT

The constant increase of anthropogenic emissions of aerosols, usually resulting from a complex mixture from various sources, leads to a deterioration of the ambient air quality. The stable isotope compositions (δ13C and δ15N) of total carbon (TC) and nitrogen (TN) in both PM10 and emissions from potential sources were investigated for first time in a rural and an urban Caribbean costal sites in Cuba to better constrain the origin of the contamination. Emissions from road traffic, power plant and shipping emissions were discriminated by coupling their C and N contents and corresponding isotope signatures. Other sources (soil, road dust and cement plant), in contrast, presented large overlapping ranges for both C and N isotope compositions. δ13CPM10 isotope compositions in the rural (average of -25.4 ±â€¯1.2‰) and urban (average of -24.8 ±â€¯1.2‰) sites were interpreted as a mixture of contributions from two main contributors: i) fossil fuel combustion and ii) cement plant and quarries. Results also showed that this last source is impacting more air quality at the urban site. A strong influence from local wood burning was also identified at the rural site. These conclusions were comforted by a statistical analysis using a conditional bivariate probability function. TN and δ15N values from the urban site demonstrated that nitrogen in PM10 was generated by secondary processes through the formation of (NH4)2SO4. The exchange in the (NH4)2SO4 molecule between gaseous NH3 and particle NH4+ under stoichiometric equilibrium may control the observed 15N enrichment. At low nitrogen concentrations in the aerosols, representing PM10 with both the highest primary N and lowest secondary N proportions, comparison with the δ15N of potential sources indicate that emissions from diesel car and power plant emissions may represent the major vectors of primary nitrogen.


Subject(s)
Aerosols/analysis , Air Pollutants/analysis , Environmental Monitoring/methods , Carbon , Carbon Isotopes/analysis , Caribbean Region , Nitrogen Isotopes/analysis , Particulate Matter
6.
Environ Pollut ; 227: 194-206, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28460237

ABSTRACT

Mediterranean Basin ecosystems, their unique biodiversity, and the key services they provide are currently at risk due to air pollution and climate change, yet only a limited number of isolated and geographically-restricted studies have addressed this topic, often with contrasting results. Particularities of air pollution in this region include high O3 levels due to high air temperatures and solar radiation, the stability of air masses, and dominance of dry over wet nitrogen deposition. Moreover, the unique abiotic and biotic factors (e.g., climate, vegetation type, relevance of Saharan dust inputs) modulating the response of Mediterranean ecosystems at various spatiotemporal scales make it difficult to understand, and thus predict, the consequences of human activities that cause air pollution in the Mediterranean Basin. Therefore, there is an urgent need to implement coordinated research and experimental platforms along with wider environmental monitoring networks in the region. In particular, a robust deposition monitoring network in conjunction with modelling estimates is crucial, possibly including a set of common biomonitors (ideally cryptogams, an important component of the Mediterranean vegetation), to help refine pollutant deposition maps. Additionally, increased attention must be paid to functional diversity measures in future air pollution and climate change studies to establish the necessary link between biodiversity and the provision of ecosystem services in Mediterranean ecosystems. Through a coordinated effort, the Mediterranean scientific community can fill the above-mentioned gaps and reach a greater understanding of the mechanisms underlying the combined effects of air pollution and climate change in the Mediterranean Basin.


Subject(s)
Air Pollutants/analysis , Atmosphere/chemistry , Climate Change , Ecosystem , Environmental Monitoring , Air Pollution/statistics & numerical data , Biodiversity , Climate , Humans , Nitrogen/analysis , Research
7.
Environ Sci Pollut Res Int ; 24(34): 26213-26226, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28386886

ABSTRACT

To assess the impact of nitrogen (N) pollutants on forest ecosystems, the role of the interactions in the canopy needs to be understood. A great number of studies have addressed this issue in heavily N-polluted regions in north and central Europe. Much less information is available for the Iberian Peninsula, and yet this region is home to mountain forests and alpine grasslands that may be at risk due to excessive N deposition. To establish the basis for ecology-based policies, there is a need to better understand the forest response to this atmospheric impact. To fill this gap, in this study, we measured N deposition (as bulk, wet, and throughfall fluxes of dissolved inorganic nitrogen) and air N gas concentrations from 2011 to 2013 at four Spanish holm oak (Quercus ilex) forests located in different pollution environments. One site was in an area of intensive agriculture, two sites were influenced by big cities (Madrid and Barcelona, respectively), and one site was in a rural mountain environment 40 km north of Barcelona. Wet deposition ranged between 0.54 and 3.8 kg N ha-1 year-1 for ammonium (NH4+)-N and between 0.65 and 2.1 kg N ha-1 year-1 for nitrate (NO3-)-N, with the lowest deposition at the Madrid site for both components. Dry deposition was evaluated with three different approaches: (1) a canopy budget model based in throughfall measurements, (2) a branch washing method, and (3) inferential calculations. Taking the average dry deposition from these methods, dry deposition represented 51-67% (reduced N) and 72-75% (oxidized N) of total N deposition. Canopies retained both NH4+-N and NO3-N, with a higher retention at the agricultural and rural sites (50-60%) than at sites located close to big cities (20-35%, though more uncertainty was found for the site near Madrid), thereby highlighting the role of the forest canopy in processing N pollutant emissions.


Subject(s)
Air Pollutants/toxicity , Forests , Nitrogen/toxicity , Agriculture , Air Pollutants/analysis , Ammonium Compounds/analysis , Ammonium Compounds/toxicity , Cities , Ecosystem , Environmental Monitoring/methods , Europe , Nitrogen/chemistry , Quercus/drug effects , Quercus/growth & development , Trees/drug effects , Trees/growth & development
8.
Bull Environ Contam Toxicol ; 98(1): 91-96, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27885397

ABSTRACT

The objective of the present work was to verify and compare the performance of different geochemical indices employed to identify the anthropogenic origin of selected heavy metals and other trace elements in soils. To that end, two background values, the upper continental crust and the metal content in the bed rock, were used and obtained from a forested basin of the western Pyrenees. The enrichment factor (EF), geo-accumulation index (Igeo), and contamination factor (Cif) were finally evaluated for their ability to determine anthropogenic contamination: Results indicate that an in-depth knowledge of the bed rock geochemistry and the geological background content is essential to distinguish between the natural variability of soils and any anthropogenic contribution of heavy metals. Although both EF and Cif show a similar ability to detect soil contamination, the latter is proposed as a more appropriate and sensitive marker given its ability for finding episodically elevated contamination levels.


Subject(s)
Forests , Metals, Heavy/analysis , Soil Pollutants/analysis , Soil/chemistry , Environmental Monitoring , Spain
9.
Environ Pollut ; 216: 653-661, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27344084

ABSTRACT

Atmospheric nitrogen deposition is one of the main threats for biodiversity and ecosystem functioning. Measurement techniques like ion-exchange resin collectors (IECs), which are less expensive and time-consuming than conventional methods, are gaining relevance in the study of atmospheric deposition and are recommended to expand monitoring networks. In the present work, bulk and throughfall deposition of inorganic nitrogen were monitored in three different holm oak forests in Spain during two years. The results obtained with IECs were contrasted with a conventional technique using bottle collectors and with a literature review of similar studies. The performance of IECs in comparison with the conventional method was good for measuring bulk deposition of nitrate and acceptable for ammonium and total dissolved inorganic nitrogen. Mean annual bulk deposition of inorganic nitrogen ranged 3.09-5.43 kg N ha(-1) according to IEC methodology, and 2.42-6.83 kg N ha(-1) y(-1) using the conventional method. Intra-annual variability of the net throughfall deposition of nitrogen measured with the conventional method revealed the existence of input pulses of nitrogen into the forest soil after dry periods, presumably originated from the washing of dry deposition accumulated in the canopy. Important methodological recommendations on the IEC method and discussed, compiled and summarized.


Subject(s)
Ammonium Compounds/analysis , Environmental Monitoring/methods , Forests , Nitrates/analysis , Nitrogen Cycle , Ecosystem , Ion Exchange Resins , Mediterranean Region , Nitrogen/analysis , Quercus , Soil , Spain
10.
Environ Sci Pollut Res Int ; 23(7): 6400-13, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26620865

ABSTRACT

Peri-urban vegetation is generally accepted as a significant remover of atmospheric pollutants, but it could also be threatened by these compounds, with origin in both urban and non-urban areas. To characterize the seasonal and geographical variation of pollutant concentrations and to improve the empirical understanding of the influence of Mediterranean broadleaf evergreen forests on air quality, four forests of Quercus ilex (three peri-urban and one remote) were monitored in different areas in Spain. Concentrations of nitrogen dioxide (NO2), ammonia (NH3), nitric acid (HNO3) and ozone (O3) were measured during 2 years in open areas and inside the forests and aerosols (PM10) were monitored in open areas during 1 year. Ozone was the only air pollutant expected to have direct phytotoxic effects on vegetation according to current thresholds for the protection of vegetation. The concentrations of N compounds were not high enough to directly affect vegetation but could be contributing through atmospheric N deposition to the eutrophization of these ecosystems. Peri-urban forests of Q. ilex showed a significant below-canopy reduction of gaseous concentrations (particularly NH3, with a mean reduction of 29-38%), which indicated the feasibility of these forests to provide an ecosystem service of air quality improvement. Well-designed monitoring programs are needed to further investigate air quality improvement by peri-urban ecosystems while assessing the threat that air pollution can pose to vegetation.


Subject(s)
Air Pollutants/analysis , Ammonia/analysis , Nitric Acid/analysis , Nitrogen Dioxide/analysis , Ozone/analysis , Air Pollution , Cities , Environmental Monitoring , Forests , Particulate Matter/analysis , Quercus/growth & development , Spain , Weather
SELECTION OF CITATIONS
SEARCH DETAIL
...